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Abstract

We propose that current models of graph comprehen-
sion do not adequately capture how people use graphs
and complex visualizations. To investigate this hypoth-
esis, we examined 3 sessions of scientists using an in vivo
methodology. We found that in order to obtain infor-
mation from their graphs, scientists not only read off
information directly from their visualizations (as cur-
rent theories predict), but they also used a great deal of
mental imagery (which we call spatial transformations).
We propose a new model of visualization comprehension
and usage to account for this data.

Introduction

If a person looks at a standard stock market graph or
a meteorologist is examining a complex meteorological
visualization, how is information extracted from these
graphs? The most influential research on graph and visu-
alization comprehension is Bertin’s (1983) task analysis
that suggests three main processes in graph and visual-
ization comprehension:

1. Encode visual elements of the display: For example,
identify lines and axes. This stage is influenced by pre-
attentive processes and is affected by the discriminability
of shapes.

2. Translate the elements into patterns: For example,
notice that one bar is taller than another or the slope of
a line. This stage is affected by distortions of perception
and limitations of working memory.

3. Map the patterns to the labels to interpret the spe-
cific relationships communicated by the graph. For ex-
ample, determine the value of a bar graph.

Most of the work done on graph comprehension has
examined the encoding, perception, and representation
of graphs. Cleveland and McGill, for example, have
examined the psychophysical aspects of graphical per-
ception (Cleveland & McGill, 1984, 1986). Similarly,
Pinker’s theory of graph comprehension, while quite
broad, focuses on the encoding and understanding of
graphs (Pinker, 1990). Kosslyn’s work emphasizes the
cognitive processes that make a graph more or less diffi-
cult to read. Kosslyn’s syntactic and semantic (and to a
lesser degree pragmatic) level of analysis focuses on en-
coding, perception, and representation of graphs (Koss-
lyn, 1989). Recent work by Carpenter and Shah (1998)
shows that people switch between looking at the graph
and the axes in order to comprehend the visualization.

This scheme seems to work very well when the graph
contains all the information the user needs (i.e., when the
information is explicitly represented in one form or an-
other). Thus, when an undergraduate is asked to extract
specific information from a bar-graph, the above process
seems to hold. However, graph usage outside the labo-
ratory is probably not simply a series of information ex-
tractions. For example, when looking at a stock market
graph, the goal may not be just to determine the current
or past price of the stock, but perhaps to determine what
the price of the stock will be sometime in the future. A
weather forecaster looking at a meteorological visualiza-
tion is frequently trying to predict what the weather will
be in the future, as well as what the current visualization
shows (Trafton, Kirschenbaum, Tsui, Miyamoto, Ballas,
& Raymond, 2000). A scientist examining results from
a recent experiment can not always display the available
information in a way that perfectly shows the answer to
her hypotheses.

How do current theories of graph comprehension hold
up when a graph or visualization does not contain the ex-
act information needed? Unfortunately, the theories do
not say anything about this situation. In fact, there are
no specifications in any theory of graph comprehension
about how information could or would be extracted from
a visualization where that information is not represented
in some form. If a graph does not contain the informa-
tion needed by the user, the graph is often labeled “bad”
or “useless” (Kosslyn, 1989; Pinker, 1990).

Current graph comprehension theories do not have a
great deal to say about what to do when a graph does
not explicitly show the needed information for a variety
of reasons. The main reason is probably that most graph
comprehension studies have used fairly simple graphs for
which no particular domain knowledge is required (e.g.,
Carter, 1947; Lohse, 1993; Pinker, 1990; Sparrow, 1989).
However, in real-world situations, people use complex vi-
sualizations that require a great deal of domain knowl-
edge, and all the needed information would probably not
be explicitly represented in the graph. This study will
thus try to answer two questions about graph compre-
hension. Do expert users of visualizations ever need in-
formation that is not on a specific graph they are using?
If so, how do they extract that information from the
graph?

There are several possible things that users could do
when trying to extract information from a graph. In



the simplest case, the information is explicitly available,
and they can simply read off the information from the
visualization. What do they do when information they
need is not available on the visualization? They could
create a completely new visualization that does show
the information. They could also collect more data or
consult another source. They could create an explicit
plan to look for more data or run another experiment.

What do they do when the visualization is all they
have to work with? What kind of mental operations
could users perform on graphs and visualizations in or-
der to extract information that is not explicit? One pos-
sibility is that people use some sort of visual imagery to
extract information that is not explicitly represented on
a graph or visualization. For example, a weather fore-
caster may mentally imagine a front moving east over the
next several days (Trafton et al., 2000), or a stock an-
alyst may mentally extend a line on a graph and think
that a stock will continue to rise. We have developed
a framework for coding and working with these kinds
of graphs and visualizations called Spatial Transforma-
tions that will be used to investigate these issues. We
will argue that spatial transformations are a fundamen-
tal aspect of complex visualization usage.

Spatial Transformations are cognitive operations that
a scientist performs on a visualization. Sample spa-
tial transformations are mental rotation (e.g., Shepard
& Metzler, 1971), creating a mental image, modifying
that mental image by adding or deleting features to or
from it, time series progression prediction, mentally mov-
ing an object, mentally transforming a 2D view into a
3D view (or vice versa), comparisons between different
views (Kosslyn, Sukel, & Bly, 1999; Trafton, Trickett,
& Mintz, 2001), and anything else a scientist mentally
does to a visualization in order to understand it or fa-
cilitate problem solving. Also note that a spatial trans-
formation can be done on either an internal (i.e., men-
tal) image or an external image (i.e., a scientific visu-
alization on a computer-generated image). What all
spatial transformations have in common is that they
involve the use of mental imagery. A more complete
description of spatial transformations can be found at
http://iota.gmu.edu/users/trafton/405st.html.

We will examine the number of times that users needed
information from a visualization. If all or most of the in-
formation is available explicitly on the visualization, we
should see primarily read-offs (Kosslyn, 1989; Pinker,
1990). If, however, a particular visualization does not
explicitly display particular information that a scientist
wants, we will examine how the scientist goes about ob-
taining that information. We expect that in complex
visualizations, there is a great deal of information that
is needed in addition to what is displayed, and we expect
scientists to use spatial transformations to retrieve that
information.

Method

In order to investigate the issues discussed above, we
have adapted Dunbar’s in vivo methodology (Dunbar,
1995, 1996; Trickett, Trafton, & Schunn, 2000b). This

approach offers several advantages. First, it allows the
observation of experts, who are thus able to use their
domain knowledge to guide their strategy selection. Sec-
ond, it allows the collection of ”on-line” measures of
thinking, which allow the investigation of the scientists’
reasoning as it occurs (Ericsson & Simon, 1993). Finally,
the tasks (experiment design, data analysis, etc.) con-
ducted by the scientists, as well as the tools they use,
are fully authentic.

Two sets of scientists were videotaped while conduct-
ing their own research. All the scientists were experts,
having earned their Ph.D.s more than 6 years previously.
In the first set, two astronomers, one a tenured profes-
sor at a university, the other a fellow at a research in-
stitute, worked collaboratively to investigate computer-
generated visual representations of a new set of observa-
tional data. At the time of this study, one astronomer
had approximately 20 publications in this general area,
and the other approximately 10. The astronomers have
been collaborating for some years, although they do not
frequently work at the same computer screen and the
same time to examine data.

In the second dataset, a physicist with expertise in
computational fluid dynamics worked alone to inspect
the results of a computational model he had built and
run. Two related sessions were recorded with this sci-
entist over consecutive days. He works as a research
scientists at a major U.S. scientific research facility, and
had earned his Ph.D. over 20 years previously. He had
inspected the data previously but had made some adjust-
ments to the physics parameters underlying the model
and was therefore revisiting the data.

Both sets of scientists were instructed to carry out
their work as though no camera were present and with-
out explanation to the experimenter (Ericsson & Simon,
1993). The relevant part of the astronomy session lasted
about 53 minutes, and the two physics sessions each
lasted approximately 15 minutes. All utterances were
later transcribed and segmented according to complete
thought. All segments were coded by 2 coders as on-
task (pertaining to data analysis) or off-task (e.g., jokes,
phone call interruptions, etc.). Inter-rater reliability for
this coding was more than 95%. Off-task segments were
excluded from further analysis. On-task segments (N
= 649 for the astronomy dataset and N = 189 for the
first physics dataset and N = 176 for the second physics
dataset) were further coded as described below.

The Tasks and the Data

Astronomy The astronomical data under analysis
were optical and radio data of a ring galaxy. The as-
tronomers high-level goal was to understand its evolu-
tion and structure by understanding the flow of gas in
the galaxy. In order to understand the flow of gas, the as-
tronomers must make inferences about the velocity field,
represented by contour lines on the 2-dimensional dis-
play. The astronomers’ task was made difficult by two
characteristics of their data. First, the data were one- or
at best 2-dimensional, whereas the structure they were
attempting to understand is 3-dimensional. Second, the



Figure 1: An example of the kind of visualizations ex-
amined by the astronomers.

data were noisy, and there was no easy way to distin-
guish between noise and real phenomena. Figure 1 shows
a screen snapshot of the type of data the astronomers
were examining. In order to make their inferences, the
astronomers used different types of image, representing
different phenomena (e.g., different forms of gas), which
represent different information about the structure and
dynamics of the galaxy. Some of these images could be
overlaid on each other. In addition, the astronomers
could choose from images created by different process-
ing algorithms, each with advantages and disadvantages
(e.g., more or less resolution). Finally, they could adjust
different features of the display, such as contrast or false
color. A more complete description of this dataset can
be found in Trickett, Fu, Schunn, and Trafton (2000a)

and Trickett, Trafton, and Schunn (2000b).
Physics The physicist was working to evaluate how

deep into a pellet a laser light will go before being re-
flected. His high-level goal was to understand the funda-
mental physics underlying the reaction, an understand-
ing that hinged on an understanding of the relative
importance and growth rates of different modes. The
physicist had built a model of the reaction; other scien-
tists had independently conducted experiments in which
lasers were fired at pellets and the reactions recorded.
A close match between model and empirical data would
indicate a good understanding of the underlying theory.
Although the physicist had been in conversation with the
experimentalist, he had not viewed the empirical data,
and in this session he was investigating only the results
of his computational model. However, he believed the
model to be correct (i.e., he had strong expectations

Figure 2: An example of the kind of visualizations ex-
amined by the physicist.

about what he would see), and in this sense, this ses-
sion may be considered confirmatory.

The data consisted of two different kinds of represen-
tation of the different modes, shown over time (nanosec-
onds). The physicist was able to view either a Fourier
decomposition of the modes or a representation of the
“raw” data.

Figure 2 shows an example of the physicist’s data. He
could choose from black-and-white or a variety of color
representations, and could adjust the scales of the dis-
played image, as well as some other features. He was
able to open numerous views simultaneously.

Coding Scheme

Our goals in this research are first, to determine if com-
plex visualizations contain all the information needed by
the scientists, and, if not, to investigate what happens
when they do not have all the information they need. We
propose that spatial transformations are a major por-
tion of extracting information from a visualization when
the data is not explicitly represented. Consequently, we
identified every situation where a scientist wanted to ex-
tract information from a visualization. Next, we coded
what the scientist did to extract information, including
reading off the information directly from the graph, spa-
tial transformations, changing the visualization, plans
or discussions about getting more data, and abandoning
their attempt to get the information. We now describe
and provide examples of this coding scheme in detail.

Desire to extract information A scientist would
frequently want to extract some amount of information
from a visualization. Comments varied from the very
general (“What do we see?”) to the very specific (“Let’s
see, how does oh-three versus three-oh [look]?”).

Read-Off A scientist would be able to read-off infor-
mation directly from the graph. Information that was



Example Explanation
After all, it is ten to the Scientist is looking at a line
minus six. . . and extracting the y-axis value

I mean, the fact you see such a strong
concentration of gas in the ring, um. ..

Scientist is reading off the
amount of gas in the ring

velocity spread of a normal galaxy.

That’s about 220 km/sec, which is the

Scientist is reading off
the velocity spread

Table 1: Examples of information that is read off the visualizations.

Spatial Transformation | Example

Explanation

Create Mental Image

spider diagram...

I mean, in a perfect, in a perfect
world, in a perfect sort of

Scientist is creating a mental
image of a spider diagram; there
is no spider diagram displayed.

Modify Image
the black line

So that [line] would be below

Scientist is adding a new
(hypothesizied) line to a
current visualization

Modify Image If there was no streaming

gas

motion or sort of piling of

Scientist has imaged a previous
mental image and is now removing
the streaming motions from his mental image

Comparison:

Maybe it’s a projection effect,
although if that’s true, there should
be a very large velocity dispersion.

Scientist is comparing a
current image to a previously
created mental image.

Table 2: Examples of spatial transformations.

read off a visualization was explicitly on the graph and
the scientist simply had to read-off a particular value.
For every utterance, we evaluated whether a value was
read off the visualization. Table 1 shows several exam-
ples of information that was read off of the visualization.

Spatial Transformations As discussed earlier, spa-
tial transformations are cognitive operations that a sci-
entist performs on a visualization. For every utterance
in each protocol we evaluated whether there was a spa-
tial transformation. Spatial transformations were fur-
ther coded as Create Image, Modify Image, or Compar-
ison. Table 1 shows examples of each category of spatial
transformation (note that these utterances are indepen-
dent of one another and do not represent a sequence).
Table 2 shows several examples of spatial transforma-
tions that were used by the scientists.

Changing the Visualization The scientists were us-
ing their own tools and were able to change the visu-
alization to a completely different representation. For
example, a scientist could change the data display from
the raw data to a Fourier mode display). Alternatevely,
the scientists could “tweak” the current representation
(from black and white to color, for example). We coded
the visualization changes where the scientists were look-
ing for additional information. If they simply made a
mistake and tweaked the visualization, we did not count
that visualization change. For example, while looking at
a particularly compressed visualization, one of the sci-
entists said “Where’s three-oh at? Don’t see three [oh].
That’s what I figured, I was gonna get spaghetti. Let’s

do are-plot.” and then replotted the data with a reduced
dataset.

Plans to gather more data Occasionally, the scien-
tists wanted or needed to gather more data. We coded
every time they made a plan to gather more data. For
example, one scientist said “So that means that this guy
is in fact between him and him, which is exactly what
the experimentalist believes he saw. Now, somewhere
along the line I have to get their results.”

Abandoning their attempt to get information
Sometimes the scientists either could not decide what
data to get or simply abandoned their quest for a specific
information. We coded every time the scientists aban-
doned their attempt to get information. For example,
one scientist, unable to explain a particular feature af-
ter extensive investigation of the image, said “Yeah well,
[let’s] gloss over it.”

Results

Our two goals in this paper are to explore whether sci-
entists are able to directly extract the amount of infor-
mation they need from the visualizations they examine
and if not, to explore how they do get the information
that is needed.

How often is needed information directly
available?

Of the 1014 total utterances in the three sessions, almost
half (481) involved some form of information gathering.




As Figure 3 shows, approximately half of those in-
formation gathering instances were read-off, suggesting
that the scientist did use the visualization a great deal to
extract information. However, a there were many times
when the scientists needed information from a visualiza-
tion but it was not available directly from the visual-
ization. Thus, the visualizations seem to be good, but
far from perfect from an information gathering point of
view.
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Figure 3: The number of read-offs, spatial transforma-
tions, visualization changes, plans to collect future data,
and decisions to abandon the attempt to get more data
for all datasets.

How was needed information extracted if it was not
simply read off? As Figure 3 shows, the vast majority of
information that was not read off was gathered by using
spatial transformations. In fact, there was no statistical
difference between the number of times that the scien-
tists read off information directly from the graph and the
number of spatial transformations, x?(1) = 1.21,p > .20.

Additionally, scientists chose to wuse a spatial
transformation to get mneeded information from
a visualization rather than changing the visual-
ization,  x2(1) = 122.25,p < .001, making plans
to gather more data y%(1)=184.19,p < .001, or
abandoning their attempt to answer their question,
x2(1) = 204.02,p < .001.

General Discussion

We have conducted a detailed analysis of expert scien-
tists at work in their own laboratories, analyzing data
that they have collected themselves. Our results show
that these scientists do extract a great deal of informa-
tion from the visualizations. However, these visualiza-
tions do not provide the scientists with all the informa-
tion they need to answer their questions. We found that
when they needed information that was not explicitly
provided by the visualization, they tended to perform
spatial transformations to answer their questions.

It is interesting that the scientists did not simply
change the visualization more frequently to get the
needed information. There was some evidence in the
protocols that it was not easy to create new visualiza-
tions. For example, some of the visualizations had to be

LAll x?’s used the Bonferroni adjustment.

E:Bertin, 1983; Kosslyn, 1989; Pinker, 1990 E:Carpenter & Shaw, 1998

m

Encode Visual Translate
p Map patterns
Elements of > elementsinto  —>; to labels
Display patterns
E:Bertin, 1983; Lohse, 1993; Info
Sparrow, 1989 Read-Off Available?
Spatial
Transformations
E:Current Paper
Usage of

information -, _ £-Trafton et al., 2000

Figure 4: Our current theoretical model of complex visu-
alization usage. The “E:” shows evidence for each stage
of the model.

re-done because of an error that was made in the display
(i.e., needed data was not included in the plot or the
plot was not presented logarithmically when it should
have been). However, this problem did not seem to have
prevented the scientists from trying to make the changes:
there were no instances of a scientist saying the visual-
ization tool was too complicated or difficult to work with
(though these tools could no doubt be improved). Thus,
the scientists’ use of spatial transformations do not seem
to be a substitute for “bad” graphs, but rather a strategy
to understand the data more thoroughly.

As suggested earlier, current theories of graph compre-
hension can not account for this pattern of results. Cur-
rent theories (e.g., Bertin, 1983; Kosslyn, 1989; Pinker,
1990) deal primarily with how users extract information
that is explicitly available on a graph or visualization.
In this study, we have shown that users do not simply
extract information that is explicitly shown on a visual-
ization; rather, they extract information and use mental
imagery to create similar visualizations, modify those
mental images, and compare their mental results to on-
screen results. These spatial transformation seem to be
used for a variety of reasons, including hypothesis test-
ing (Trickett, Trafton, & Schunn, under review) and un-
derstanding their own mental representation through a
process of aligning various mental images (Trafton et al.,
2001).

How can we integrate these new results into current
theories? We believe that the current theoretical model
should be expanded to include spatial transformations as
part of the cognitive processes that users go through to
interpret and use visualizations. Figure 4 shows our cur-
rent model of graph comprehension, along with evidence
that supports each stage of this model.



We believe, as Figure 4 shows, that when people use
graphs or visualizations, they initially go through a pro-
cess to understand the graph itself. Then, when they
need to extract information, they can either read off that
information directly from the visualization or, if that in-
formation is not available, perform a spatial transfor-
mation to get the needed information.? Finally, that
information is actually used by the user.
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